ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I»

(ФГБОУ ВО ПГУПС)

ПЕТРОЗАВОДСКИЙ ФИЛИАЛ ПГУПС

ОДОБРЕНО	УТВЕРЖДАЮ	
на заседании цикловой комиссии	Начальник УМО	
протокол № _6		
от « <u>16</u> » <u>тем</u> 201 4 г.	1/ Karescero 1	А.В. Калько /
Председатель цикловой комиссии:		
/ М.Ю. Семенюк /	OT ((_16)) 06	201 ₹ Γ.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.07. ОХРАНА ТРУДА

Специальность: 27.02.03 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

Разработчик: Скоробогатова И. В. –преподаватель ПФ ПГУПС **Переработал:** Семенюк М. Ю. – преподаватель ПФ ПГУПС

Пояснительная записка

Методическое пособие по проведению практических занятий разработано в соответствии с требованиями ФГОС и рабочей программы учебной дисциплины ОП.07. Охрана труда по специальности **27.02.03** Автоматика и телемеханика на транспорте (железнодорожном транспорте), утвержденного приказом Министерства образования и науки Российской Федерации от 17 мая 2014 г. № 447.

Методическое пособие предназначено для выполнения заданий практических занятий обучающимися в учебном кабинете «Охрана труда» под руководством преподавателя.

В результате изучения дисциплины ОП.07. Охрана труда обучающиеся должны

уметь:

- проводить анализ травмоопасных и вредных факторов в сфере профессиональной деятельности;
 - использовать экобиозащитную технику;
 - принимать меры для исключения производственного травматизма;
 - применять защитные средства;
 - пользоваться первичными переносными средствами пожаротушения;
 - применять безопасные методы выполнения работ.

знать:

- особенности обеспечения безопасных условий труда в сфере профессиональной деятельности, нормативные правовые акты и организационные основы охраны труда в организации железнодорожного транспорта;
 - правила техники безопасности при эксплуатации электроустановок.

В соответствии с рабочей программой учебной дисциплины ОП.07. Охрана труда обучающиеся должны выполнить 4 практических занятий, предложенных в методическом пособии.

Практические занятия выполняются в сроки, предусмотренные учебным графиком.

Правила охраны труда при проведении практических занятий

Перед началом любой самостоятельной работы обучающимся необходимо прослушать инструктаж по охране труда при выполнении работ.

- 1. Общие требования охраны труда
- 1.1. К проведению практических занятий допускаются обучающиеся, прошедшие инструктаж по охране труда.
- 1.2. Обучающиеся должны соблюдать правила проведения, расписание учебных занятий, установленные режимы труда и отдыха.
- 1.3. В процессе работы обучающиеся должны соблюдать порядок проведения практических занятий, правила личной гигиены, содержать в чистоте рабочее место.
 - 2. Требования охраны труда перед началом работы
- 2.1. Внимательно изучить содержание и порядок выполнения работы, а также безопасные приёмы её выполнения.
- 2.2 Подготовить к работе рабочее место, убрать посторонние предметы.
- 2.3. Проверить наличие необходимого оборудования и принадлежностей.
 - 3. Требования охраны труда во время работы
- 3.1. Точно выполнять все указания преподавателя при проведении работ.
 - 4. Требования охраны труда по окончании работы
 - 4.1. Привести в порядок рабочее место.
 - 4.2. Проветрить помещение.

Перечень практических работ

- 1. Оформление акта о несчастном случае на производстве формы Н-1.
- 2. Оценка параметров микроклимата рабочих мест.
- 3. Оценка освещённости рабочих мест в помещении.
- 4. Эргономические основы охраны труда.

Практическое занятие № 1.

Тема: Оформление акта о несчастном случае на производстве формы H-1. **Цель занятия:** Приобрести умения и опыт в расследовании причин и обстоятельств несчастного случая, научиться заполнять акт формы H-1.

Порядок выполнения:

- 1. Провести анализ обстоятельств несчастного случая.
- 2. Квалифицировать вид несчастного случая (производственный, групповой или со смертельным исходом).
- 3. Составить акт о несчастном случае на производстве по форме H-1.

Разъяснения по заполнению акта о несчастном случае на производстве формы H-1

Важнейшим документом среди материалов расследования несчастного случая на производстве является акт о несчастном случае на производстве формы H-1. Этот акт является документом, подтверждающим факт несчастного случая, и содержит основные выводы комиссии по расследованию несчастного случая на производстве.

- 1. Указывается полностью ФИО.
- 2. Указывается число, месяц, год.
- 3. Указывается количество полных часов от начала смены.
- 4. Полное наименование нанимателя, т.е. нельзя писать ОАО.
 - 4.1. Юридический адрес, т.е. адрес по которому он зарегистрирован.
 - 4.2. Форма собственности: (государственная, частная).
- 5. Наименование и адрес нанимателя, где произошел несчастный случай.
 - 5.1. Указывается структурное подразделение (цех, отдел).
- 6. Сведения о пострадавшем.
 - 6.1. Пол: не нужное зачеркнуть.
 - 6.2. Возраст указывается количество полных лет, исполнившихся на момент несчастного случая.
 - 6.3. Профессия.
 - 6.4. Общий стаж работы количество лет, месяцев, дней (входит служба в армии, учеба в лицее, колледже, ВУЗе и т. д.).

- 6.5. Стаж по профессии количество лет, месяцев, дней.
- 6.6. Вводный инструктаж по заданию вы должны сами определить дату.
- 6.7. Наименование совмещаемой профессии если работник получил травму не по основной профессии, а по совмещаемой, то указываете её наименование, если нет, то пишите, нет совмещаемой профессии.
- 6.8. Стаж работы по профессии, при которой произошел несчастный случай соответственно указывается стаж работы по совмещаемой профессии, или п. 6.5.
- 6.9. Указывается дата и количество часов обучения или пишите «не требуется» или «не проводилась».
 - 6.10. Проверка знаний дата и № протокола или «не требуется», или «не проводилась».
- 6.11. Инструктажи (повторный, внеплановый, целевой дата последнего).
 - 6.12. Медицинские осмотры предварительный (при поступлении на работу), периодический дата последнего.
- 7. Медицинский диагноз заполняется на основании «медицинского заключения».
- 8. Нахождение в алкогольном опьянении заполняется на основании «Медицинского заключения» с указанием степени опьянения.
- 9. Обстоятельства кратко изложить обстоятельства, предшествовавшие несчастному случаю, описать события и действия пострадавшего и других лиц, связанных с несчастным случаем. Изложить последовательность событий, указать, чем нанесена травма (часть оборудования, инструмент, приспособление и т.д.) и поврежденную часть тела.
- 10. Вид происшествия указывается в соответствии с классификатором, а не несчастный случай.

- 11. Причины несчастного случая указываются в соответствии с классификатором. Их может быть несколько записываются в иерархическом порядке, т.е. в начале основная.
- 12. Оборудование наименование, тип, марка, год выпуска.
- 13. Лица, допустившие нарушения ФИО, должность и какие нормативноправовые акты нарушены (это может быть и сам пострадавший).
- 14. Свидетели если были, указать ФИО, должность, место работы, адрес места жительства.
- 15. Мероприятия проанализировав обстоятельства и причины несчастного случая разрабатываете мероприятия с указанием ответственных за исполнение и срок исполнения.

Это может быть — внеплановый инструктаж, дополнительное обучение, проверка знаний, беседа с работниками этого структурного подразделения с разъяснениями обстоятельств и причин несчастного случая.

16. Далее, утверждается акт с указанием руководителя организации и даты утверждения.

Утвержден постановлением Минтруда и соцзащиты, Минздрава от 27.01.2004 N 5/3 (в ред. постановления Минтруда и соцзащиты, Минздрава от 02.04.2007 N 51/28)

Форма	H-1
T Opmu	11 1

Рорма п-1	
	УТВЕРЖДАЮ
(долж	кность, подпись, инициалы, фамилия
AKT №	
О НЕСЧАСТНОМ СЛУЧАЕ НА Г	ГРОИЗВОДСТВЕ
(место составления)	(дата)
1. Фамилия, имя, отчество потерпевшего	
2. Дата и время несчастного случая	
3. Количество полных часов, отработанных от начала несчастного случая	а рабочего дня (смены) до
4. Полное наименование организации, нанимателя, стр работал) потерпевший	рахователя, у которого работает
4.1. Юридический адрес организации, нанимателя, стр	рахователя
4.2. Форма собственности организации, нанимателя, с	трахователя
5. Наименование и адрес организации, нанимателя, ст несчастный случай	рахователя, где произошел
5.1. Цех, участок, место, где произошел несчастный сл	пучай

6. Сведения о потерпевшем:
6.1. пол: мужской, женский (ненужное зачеркнуть)
6.2. возраст (количество полных лет)
6.3. профессия (должность)
разряд (класс)
6.4. общий стаж работы (количество лет, месяцев, дней)
6.5. стаж работы по профессии (должности) или виду работы, при выполнении
которой произошел несчастный случай (количество лет, месяцев, дней)
6.6. вводный инструктаж по охране труда
(дата проведения)
6.7. обучение по вопросам охраны труда по профессии или виду работы, при выполнении которой произошел несчастный случай
(дата, количество часов, не требуется) 6.8. проверка знаний по охране труда по профессии или виду работы, при выполнении которой произошел несчастный случай
(дата, номер протокола, не требуется) 6.9. инструктаж на рабочем месте (первичный, повторный, внеплановый, целевой - ненужное зачеркнуть) по профессии или виду работы, при выполнении которой произошел несчастный случай
(дата последнего инструктажа, если не проводился - указать) 6.10. стажировка: с "" 20 г. по "" 20 г.
(если не проводилась - указать)
6.11. медицинские осмотры:
предварительный (при поступлении на работу)
(дата, не требуется) периодический
(дата последнего осмотра, не требуется) 7. Медицинский диагноз повреждения здоровья потерпевшего

8. Нахождение потерпевшего в состоянии алкогольного, наркотического или токсического опьянения
(на основании медицинского заключения с указанием степени опьянения)9. Обстоятельства несчастного случая:
10. Вид происшествия
11. Причины несчастного случая:
12. Оборудование, машины, механизмы, транспортные средства, эксплуатация которых привела к несчастному случаю:
(наименование, тип, марка, год выпуска, организация-изготовитель,
дата последнего технического осмотра (освидетельствования)
13. Лица, допустившие нарушения требований законодательства о труде и охране труда, нормативных правовых актов, технических нормативных правовых актов, локальных нормативных правовых актов:
(фамилия, имя, отчество, должность (профессия), нарушения требований,
нормативных правовых актов, технических нормативных правовых актов,
локальных нормативных правовых актов)
14. Степень вины потерпевшего процентов.
15. Свидетели несчастного случая:
(фамилия, имя, отчество, должность, место работы, адрес места жительства)

16. Мероприятия по устранению причин несчастного случая и предупреждению повторения подобных происшествий:

Наименование мероприятий	Срок	Ответственный за	Отметка о
	выполнения	выполнение	выполнении
1			
2			
3			

Уполномоченное должностное лицо организа	ации, нанимателя, страхователя
	(инициалы, фамилия)
Лица, принимавшие участие в расследовании Уполномоченный представитель профсоюза (работников)	
(должность, подпись) Специалист по охране труда организации, на возложены обязанности специалиста по охра	
(должность, подпись) Другие представители организации, нанимате страхователя:	(инициалы, фамилия) еля,
(должность, подпись) Представитель страховщика (при участии в р	(инициалы, фамилия) расследовании)
(должность, подпись) Потерпевший или лицо, представляющее его	(инициалы, фамилия) интересы (при участии в расследовании)
(подпись) (ин	нициалы, фамилия)

М.П. организации, нанимателя, страхователя

Практическое занятие № 2.

Тема: Оценка параметров микроклимата рабочих мест.

Цель: Научиться определять метеофакторы производственного помещения, оценивать их в соответствии с санитарными нормами

Порядок выполнения:

- 1. Измерение параметров микроклимата в помещении и на улице:
- 1.1. Температура воздуха с помощью термометра
- 1.2 Скорость движения воздуха с помощью кататермометра
- 2. Ответить на контрольные вопросы:
 - 1. Какие основные параметры воздушной среды определяют МК рабочей зоны производственных помещений.
 - 2. Какая существует взаимосвязь между самочувствием человека и состоянием МК производственной среды?
 - 3. Какие факторы учитываются при нормировании МК рабочей зоны помещений?
 - 4. Какими нормативными документами регламентированы метеорологические условия производственной среды?
 - 5. Дайте определение оптимальных и допустимых параметров МК.
 - 6. Назовите приборы для измерения температуры, относительной влажности, движения воздуха.
 - 7. В каких случаях для измерения температуры воздуха применяется парный термометр?
 - 8. Каковы устройство и принцип действия стационарного психометра?
 - 9. В чем отличие и преимущества переносного аспирационного психометра от стационарного?
 - 10. Какие санитарно-гигиенические мероприятия позволяют создавать и поддерживать МК рабочей зоны в соответствии с требованиями ГОСТа и санитарных норм?
- 3. Сделать вывод о проделанной работе.

Тема: Оценка параметров микроклимата рабочих мест.

Цель: научиться определять метеофакторы производственного помещения, оценивать их в соответствии с санитарными нормами

Содержание: 1. изучение устройств приборов, применяемых для измерения параметров микроклимата;

- 2. определение температуры и подвижности воздуха в рабочей зоне производственного помещения;
 - 3. санитарно-гигиеническая оценка измеренных параметров микроклимата рабочей зоны.

	Место	Показания прибора	
№	измерения	to(c)	подвижность воздуха
1	Кабинет		
2	Коридор		
3	Улица		

Контрольные вопросы:

- 1. Какие основные параметры воздушной среды определяют МК рабочей зоны производственных помещений.
- 2. Какая существует взаимосвязь между самочувствием человека и состоянием МК производственной среды?
- 3. Какие факторы учитываются при нормировании МК рабочей зоны помещений?
- 4. Какими нормативными документами регламентированы метеорологические условия производственной среды?
- 5. Дайте определение оптимальных и допустимых параметров МК.
- 6. Назовите приборы для измерения температуры, относительной влажности, движения воздуха.
- 7. В каких случаях для измерения температуры воздуха применяется парный термометр?
- 8. Каковы устройство и принцип действия стационарного психометра?
- 9. В чем отличие и преимущества переносного аспирационного психометраот стационарного?
- 10. Какие санитарно-гигиенические мероприятия позволяют создавать и поддерживать МК рабочей зоны в соответствии с требованиями ГОСТа и санитарных норм?

Краткие теоретические сведения

Жизнедеятельность человека, его самочувствие и работоспособность зависят от состояния микроклимата, основными факторами которого являются температура окружающей среды, относительная влажность и скорость движения воздуха. Эти факторы окружающей среды человека постоянно изменяются. Температура здорового человека поддерживается на уровне 36,5...37 градусов, для чего организм человека обладает достаточно эффективной системой терморегулирования. Терморегулирование — сложный физиологический процесс, создающий равновесие теплового обмена, обеспечивающий постоянные функции человека при различных метеорологических условиях и тяжести работы.

Микроклимат в зависимости от физиологического состояния человека может быть оптимальным и допустимым. Оптимальный МК создаёт общее и локальное ощущение теплового комфорта в течение восьми часов рабочей смены, которое характеризуется минимальным напряжением механизмов терморегуляции при высоком уровне работоспособности и которое является предпочтительным на рабочих местах. Оптимальным МК следует соблюдать при выполнении работы операторского типа (в кабинетах, на пультах управления технологическими процессами, при эксплуатации ЭВМ и др).

ДОПУСТИМЫЕ УСЛОВИЯ МИКРОКЛИМАТА

Условия установлены по критериям допустимого теплового и функционального состояния человека на период восьмичасовой рабочей смены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности. Факторы МК, взаимодействуя, влияют на организм человека.

ТРЕБОВАНИЯ К КОНТРОЛЮ И МЕТОДАМ ИЗМЕРЕНИЯ МИКРОКЛИМАТА

Измерения показателей микроклимата в целях контроля их соответствия гигиеническим требованиям должны проводиться отдельно для холодного и теплого периодов года: в холодный период года — в дни с температурой наружного воздуха, отличающейся от средней температуры наиболее холодного месяца зимы не более, чем на 5 градусов; в тёплый период года — в дни с температурой наружного воздуха, отличающейся от средней

температуры наиболее жаркого месяца не более, чем на 4 градусов. Частота измерений в оба периода года определяется стабильностью производственного процесса.

При выборе участка и времени измерения необходимо учитывать все факторы, влияющие на микроклимат рабочих мест (фазы технологического процесса, функционирование системы вентиляции и отопления и др.). Измерения показателей микроклимата следует проводить не менее 3 раз в смену на рабочих местах. Если рабочим местом являются несколько участков производственного помещения, то измерения осуществляются на каждом из них.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА

Оборудование стенда для измерения параметров микроклимата включает следующие приборы: ртутный термометр, термограф, псрихрометр.

Термометр ртутный служит для измерения температуры с точностью 0,1 градус. Для измерения температуры воздуха во времени и непрерывной записи её на ленту применяют термографы.

Кататермометры определяют скорость движения в интервале величин 0,1...1,5 м/с. Шаровой кататермометр представляет собой спиртовой термометр с двумя резервуарами — шаровой внизу и цилиндрический вверху. Шкала кататермометра имеет деления от 33 до 40 градусов. При использовании этот прибор предварительно нагревают в водяной бане, затем вытирают насухо и помещают в исследуемое место. По величине падения столба спирта в единицу времени при охлаждении кататермометра судят о скорости движения воздуха.

Психрометры измеряют относительную влажность. Психрометр состоит из двух термометров: влажного и сухого. На резервуар влажного одевается батистовый мешочек и опускается в мензурку с водой. Испаряясь, вода охлаждает влажный термометр, поэтому его показания всегда ниже показаний сухого термометра. По разности показаний термометров определяется относительная влажность воздуха. По конструкции психрометры бывают парные, стационарные и переносный.

Анемометры определяют скорость движения воздуха. В работе применяются два вида анемометров: крыльчатый и чашечный. Крыльчатый позволяет измерять скорость движения воздуха до 10 м/с с точностью 0,1 м/с, чашечный применяется для более высоких скоростей воздуха (от 1 до 30 м/с).

По измерению количества оборотов вращения крыльчатки или чашечек за определённое время оценивают скорость перемещения воздуха. Счётные механизмы приборов имеют шкалы отсчёта сотен, десятков и единиц оборотов. Для того чтобы при измерении всякий раз не приводить прибор в исходное состояние, в нём имеется механизм остановки вращения — арретир. По полученному числу оборотов в секунду на тарировочном графике, прилагаемом к паспорту прибора, находят значение скорости движения воздуха в м/с

Практическое занятие № 3.

Тема: Оценка освещённости рабочих мест в помещении

Цель: Освоить методику расчёта освещения

Порядок выполнения:

- 1. На основе исходных данных рассчитать коэффициент запаса k; коэффициент минимальной освещённости z; постоянную помещения i; коэффициент использования; расчётную освещённость Ep.
- 2. Ответить на контрольные вопросы:
 - 1. Какие виды искусственного освещения применяются в производственных и общественных зданиях?
 - 2. Какие источники света применяют для освещения?
 - 3. Какое неблагоприятное действие на организм человека оказывает недостаточность или отсутствие освещения?
 - 4. Назовите основные требования, предъявляемые к производственному освещению.
 - 5. Какие методы расчетов искусственного освещения используются для светотехнических расчетов?
 - 6. Как найти коэффициент использования?
 - 7. Как построить изолюксу с помощью осветительной стойки?
 - 8. Порядок экспериментального определения освещенности рабочих мест помещения.
 - 9. Как можно рассчитать высоту установки светильника относительно рабочей поверхности?
- 3. Сделать вывод о проделанной работе

Тема: Оценка освещенности рабочих мест в помещении.

Цель: научиться оценивать вредность условий труда по освещенности рабочих мест в помещениях и выполнять

простые светотехнические расчеты.

Содержание работы: 1. информация о приборах искусственного освещения;

- 2. изучение методов светотехнического расчета;
- 3. измерение на лабораторном стенде параметров освещенности;
- 4. гигиеническая оценка общего равномерного освещения;
- 5. расчет высоты установки на рабочем месте светильника локального освещения;
- 6. построение кривых одинаковой освещенности (изолюкс) светильника.

Исходные данные:

Размеры помещения: a = 14 M b = 9 M h = 3 M $\Phi_{\pi} = 150$

Коэффициенты отражения: стен $P_c = 0.7$ потолка $P_n = 0.3$ пола $P_p = 0.1$

Высота светильника от потолка: h = 0,12 м Высота рабочего места от пола: $h_{\text{r}} = 0,75 \text{м}$

Число	Коэффициент	Коэффициент	Постоянная	Коэффициент	Расчетная	Нормативная
ламп,	запаса,	минимальной	помещения	использования	освещенность	освещенност
n	k	освещенности		, η		Ь
		, z	$i = \frac{a * b}{h * (a + b)}$		$Ep = \frac{n * Fn * \eta}{K * S * z}$	E_H^o
						180

Контрольные вопросы:

- 1. Какие виды искусственного освещения применяются в производственных и общественных зданиях?
- 2. Какие источники света применяют для освещения?
- 3. Какое неблагоприятное действие на организм человека оказывает недостаточность или отсутствие освещения?
- 4. Назовите основные требования, предъявляемые к производственному освещению.
- 5. Какие методы расчетов искусственного освещения используются для светотехнических расчетов?
- 6. Как найти коэффициент использования?
- 7. Как построить изолюксу с помощью осветительной стойки?
- 8. Порядок экспериментального определения освещенности рабочих мест помещения.
- 9. Как можно рассчитать высоту установки светильника относительно рабочей поверхности?

Краткие теоретические сведения

Для обеспечения нормальной производственной деятельности человека при отсутствии или недостаточности естественного света применяется искусственное освещение, которое может быть общим равномерным, локализованным и местным, а также комбинированным, представляющим собой сочетание равномерного и местного освещения. Искусственное освещение создается осветительной установкой, включающей источник света, светильник и опору. В качестве источников света известны следующие устройства: лампы накаливания (табл. 5.1), галогенные лампы накаливания и большая серия газоразрядных ламп: люминесцентные ЛЛ и дуговые ртутные лампы (ДРЛ), дуговые иридиевые ртутные лампы (ДРИ) дуговые ртутные ксеноновые (ДКсТ), дуговые ртутные натриевые лампы (ДРНт) и малогабаритные экономичные новые люминесцентные лампы (К Л Л), (табл. 5.2).

Производственное освещение обусловливает видимость объектов труда, способствует улучшению качества и производительности труда. Недостаточность освещения отрицательно влияет на физиологические процессы, сердечнососудистую систему, и общий тонус организма человека, вызывает быструю утомляемость зрения, а также может быть причиной несчастных случаев.

Освещенность создается в соответствии с функциями зрения человека. К освещению рабочих мест установлены следующие требования: достаточность, постоянство, равномерность; отсутствие резких теней, блесткости, а также экономичность. Неравномерность освещения принято оценивать отношением минимальной освещенности помещения к ее максимальной. Если равномерная освещенность помещения более 50лк, то неравномерность должна быть менее 0,3, а если меньше 50лк – 0,5.

Для создания освещения, отвечающего нормативному, необходимо правильно выбрать тип и вид освещения, достаточный и экономичный источник света и светильник. Эта задача решается при проектировании. Обычно полный объём проектирования включает решение трех задач: светотехнической, электрической и экономической. В настоящей работе решается первая задача.

МЕТОДЫ СВЕТОТЕХНИЧЕСКОГО РАСЧЕТА

В основном применяют три метода: коэффициента использования, «точечный» и относительной мощности. Рассмотрим метод коэффициента использования. Он позволяет при расчете учитывать прямой и отраженный свет, поэтому его применяют при расчете общего равномерного освещения, когда требуется учитывать отраженный свет.

Метод коэффициента использования позволяет рассчитать среднюю освещенность поверхности с учетом всех падающих на нее прямых и отраженных потоков света. Переход от средней освещенности к минимальной осуществляется приближенно, поэтому метод применяется для расчета общего равномерного освещения горизонтальных поверхностей.

Поскольку при расчете необходимо определить световой поток лампы, тогда расчетная формула получается из значения коэффициента использования

$$\eta = \Phi \Gamma / \Phi \Lambda$$

Известно, что Φ_{Γ} = EH *S, а, следовательно, Φ_{π} = EH*k*z,

Где ЕН – нормируемая освещенность, лм;

 Φ_{Γ} - световой поток, падающий на горизонтальную поверхность, лм;

 Φ_{π} - световой поток лампы, лм;

k – коэффициент запаса (для ЛЛ равен 1,4 ЛН-1,3);

z – коэффициент, учитывающий неравномерность освещения рассчитанной горизонтальной поверхности;

S – освещаемая площадь помещения, м²

 η - коэффициент использования; определяют по индексу помещения типу светильника и коэффициентам p_{π} - отражения потолка, p_c – стен и p_p – пола; определяется приближенно

Индекс помещения определяют по следующей формуле:

$$i=ab/hr(a+b)$$

Где а и b – длина и ширина помещения, м;

 h_p – расчетная высота, м; h_p = H- h_c - h_r ;

 h_c – высота светильника до потолка, м;

 $h_{\scriptscriptstyle \Gamma}$ – высота от освещаемой поверхности рабочего места до пола, м;

Н – Общая высота размещения

Точечный метод позволяет определять освещенность любой точки, освещаемой осветительной установкой рабочей поверхности, если известны световой поток, светораспределение светильника и его расположение в помещении. Этот метод применяют обычно для расчета общего локализованного и местного освещения при любом положении освещаемой плоскости или наклонном положении светильника. Для общего случая световой поток лампы определяется по следующему выражению:

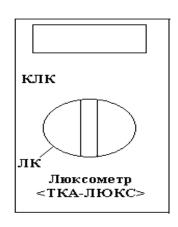
$$\Phi$$
л = 1000*Eн*k/ μ * Σ Li* ϕ

Где $E_{\scriptscriptstyle H}$ – освещенность по норме, лм;

k - коэффициент запаса;

 μ - коэффициент дополнительной освещенности, создаваемой удаленными светильниками и отраженным светом, его принимают; в пределах $\mu=1,0\dots 1,2$ или $\mu=\mu_c$ / μ_{H} ;

 Σ Li* ϕ - условная освещенность контрольной точки от суммарного освещения ближайших светильников (в качестве контрольной точки


принимают место с минимальной освещенностью);

Li – условная освещенность от i-го светильника, создаваемая стандартной лампой со световым погоном 1000 лм и определяемая по графику пространственных изолюкс горизонтальней освещенности;

 Φ_{i} – переходный для горизонтальной плоскости равен 1.

Ближайшими к расчетной точке считаются светильника с условной освещенностью меньше 5 лм, создаваемой ближним светильником.

В настоящее время создан новый люксометр «ТКА-ЛЮКС», имеющий существенные эксплуатационные преимущества с приведенными в табл. 5.5 люксометрами. Прибор имеет фотоприемное устройство, преобразующее излучение в электрический сигнал с последующие цифровой индикацией числовых значений освещенности лк. Конструктивно прибор состоит из фотометрической головки и блока

обработки сигналов, связанных между собой многожильным гибким кабелем. Органы управления режимами работы и жидкокристаллический индикатор расположены на блоке обработки сигналов, Отчетным устройством прибора является жидкокристаллический индикатор, на табло которого при измерениях индицируется числа от 0 до 1999.

Основные технические характеристики прибора: диапазон измерений освещенности от I до 200000 лк; пределы допускаемой основной относительной погрешности измерения +6%. Время непрерывной работы

прибора не менее 8ч; габаритные размеры прибора 155х77х40 мм и масса прибора 0,4 кг.

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ДОСТАТОЧНОСТИ ОБЩЕГО РАВНОМЕРНОГО ОСВЕЩЕНИЯ РАБОЧИХ МЕСТ ПОМЕЩЕНИЯ

Для выполнения работы выбирается помещение. Определяются следующие его характеристики: высота H, длина а, ширина в, назначение, количество рабочих мест и размещение светильников. Оценку освещения можно произвести одним из двух методой: экспериментальным или расчетным.

а) Экспериментальный метод

Сущность его состоит в проведении измерения освещенности на рабочих местах, имеющих относительно малую освещенность по сравнению с другими. Для измерения обычно применяют люксометры. Характеристики некоторых из них приведены в табл. 5.5. При измерениях рекомендуется использовать следующие приемы: подготовить люксометр, достать из футляра прибор и фотоэлемент, установить их горизонтально на опоре. Включить с левой стороны вилку фотоэлемента в розетку. В случае необходимости с помощью корректора выставить стрелку прибора на

нулевое деление шкалы. На фотоэлемент установить насадку К и М, если ожидаемая освещенность будет до 1000 лк и К и К и Р - при освещенности поверхности более 1000 лк;

произвести измерения: установить фотоэлемент в выбранную точку; нажать правую кнопку выбора диапазона измерения. Если стрелка отклоняется на небольшую величину, около 17 делений, то включают левую кнопку, если при насадках К, М и нажатой левой кнопке стрелка не отклоняется до деления 5 по шкала К, М, тогда измерения производят без этих насадок;

- при измерениях не допускается длительное воздействие на фотоэлемент света, создающего освещенность, превышающую установленный на люксометре предел измерения. Поэтому всегда поиск предела измерения надо начинать с большего диапазона, а далее переходить на более чувствительные пределы измерения, пока стрелка прибора не окажется в рабочей части шкалы;
- показания снятого по шкале отчета умножают на коэффициент выбранного диапазона шкалы . В зависимости от освещенности, создаваемой различными источниками света, показания люксометра следует умножать на поправочный! коэффициент Кн;
- по окончании измерений фотоэлемент отключить от прибора надеть на фотоэлемент насадку Т и уложить в крышку футляра прибора, а прибор в футляр.

б) Расчетный метод

Этот метод применяется для расчета общей равномерной освещенности по коэффициенту использования в случае учета прямого *и отраженного* света от осветительных установок прямых *отраженных* потоков света. Расчетный метод предусматривает определение и выбор количества источников света, светильников и размещение их в помещении.

Для расчета требуются следующие исходные данные: размеры помещения (длина а, ширина b, высота H); выбираемый тип лампы, конструкция светильника (вид подвески, количество ламп в одном, кривая его силы света и коэффициент направленности); коэффициенты отражения P_{π} - потолка, P_{c} - стен и P_{π} - пола

По формуле (5.1) находят общую потребную величину светового потока, выбирают источник света по световому потоку Φ_{π} и светильник типа «Алекс-Свет» (табл. 5.2). Тогда количество ламп равно $\Phi_{\pi.06\text{щ}}/\Phi_{\pi}$ и в соответствии с количеством ламп в выбранном светильнике определяют число светильников.

Далее решается задача размещения светильников в помещений. Для обеспечения равномерности освещения светильники устанавливают по углам квадратов или в шахматном порядке. Расстояния между рядами светильников принимают в зависимости от коэффициента эффективности

$$\Pi_{\mathfrak{F}} = L/hp$$

где L — расстояние между рядами светильников,

$$hp = H - hr - hc$$

Расчетный метод применяют также для решения обратной задачи. Для этого расчетная формула (5.1) преобразуется относительно $E_{\rm H}$, и по характеристикам существующего освещения находят фактическое. Результат расчета позволяет произвести оценку соответствия допустимой норме.

РАСЧЕТ ВЫСОТЫ УСТАНОВКИ СВЕТИЛЬНИКА НА РАБОЧЕМ МЕСТЕ

Местное освещение создается различными осветительными установками: настольными лампами, торшерами, бра и другими светильниками. Для обеспечения достаточности одной из его задач является правильным выбор расстояния до освещаемой поверхности, поэтому требуется всесторонне исследовать эту характеристику и выбрать оптимальный вариант. При исследовании целесообразно применить расчетный метод, а полученный результата проверить экспериментально. Для расчета следует воспользоваться точечным методом, при этом требуется следующие исходные данные: вид освещения рабочего места — комплексное, где $E_k = E_{ob} + E_{m}$; тип светильника «Астра» ; источник света ЛН, удаление контрольной точки

d =300мм; k – коэффициент, прнимают равным 1,5. Эти данные позволяют найти условную освещенность горизонтальной плоскости по следующей формуле:

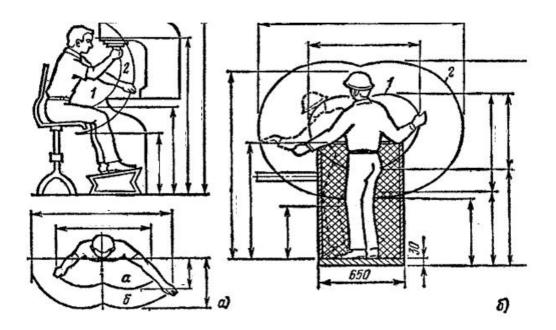
$$E_i = 1000*E_H*k/M*\Phi_{\pi}$$

По графику пространственных изолюкс по d и E_1 находят искомую высоту ордината hl. На осветительной стойке размерной шкале вертикальной стойки устанавливают передвижной штатива высоту hl от источника света и люксометром определяют фактическую освещенность горизонтальной поверхности. Затем сравнивают ее с нормативной E_{06} .

Практическое занятие № 4.

Тема: Эргономические основы охраны труда.

Цель: Изучить виды совместимости «человек-машина»


Порядок выполнения:

- 1. Дать определения понятию эргономика
- 2. Описать виды совместимости человека и машины
- 3. Дать определение понятию рабочего места
- 4. Дать определение понятию рабочей зоны
- 5. Указать на рисунке размеры рабочей зоны рук
- 6. Изобразить информационные зоны визуального поля
- 7. Изобразить устойчивые и неустойчивые положения рабочей позы
- 8. Описать порядок проектирования рабочего места
- 9. Сделать вывод о проделанной работе

Цель: Изучить виды совместимости «человек-машина».

Ход работы: 1. Эргономика					
2. Виді	совместимости человека и техники:				
•					
•					
•					
•					
•					
 Рабо 	ее место – это				
3. T 400					
4. Рабо	ая зона — это				

5. Укажите на рисунке размеры рабочей зоны рук

6. Изобразите информационные зоны визуального поля

7. Изобразите устойчивые и неустойчивые положения рабочей позы.			
9. Van una avernavana na favora va ara?			
8. Как проектируются рабочие места?			
Вывод:			

Краткие теоретические сведения

Для создания комфортных и безопасных условий труда необходимо комплексное изучение системы человек - машина - производственная среда, которые находятся в тесной взаимосвязи и влияют на безопасность, производительность и здоровье человека.

Эргономика - научная дисциплина, комплексно изучающая человека в конкретных условиях его деятельности в современном производстве.

На человека в процессе труда действуют множество факторов: вид трудовой деятельности, ее тяжесть и напряженность, условия, в которой она осуществляется (вредные вещества, излучения, климатические условия, освещенность и т.д.), психофизиологические возможности человека (прежде всего антропометрические характеристики человека, скорость реакций на различные раздражители, особенности восприятия человеком цвета и т.д.). Для того чтобы человекомашинная система функционировала эффективно и не приносила ущерба здоровью человека, необходимо, прежде всего, обеспечить совместимость характеристик машины и человека.

Вилы совместимости человека и техники.

Различают следующие виды совместимостей:

- информационная;
- психологическая;
- социальная;
- биофизическая;
- энергетическая;
- антропометрическая и технико-эстетическая.

<u>Информационная совместимость</u> - это совместимость техники психофизиологическим возможностям человека.

Оператор управляет сложными системами с помощью органов управления (кнопки, рычаги, выключатели), совокупность которых образует сенсорное поле; при этом оператор наблюдает показания приборов, экранов, схем, вслушивается в сигналы, т.е. пользуется средствами отображения информации (СОИ).

<u>Психологическая совместимость</u> учитывает психические возможности человека. Аварийность, травматизм в большой степени зависят от организационно-психологических причин: низкий профессионализм, пренебрежение требованиям безопасности, допуск к опасным работам необученных лиц или в состоянии утомления.

Необходимо учитывать особенности психики некоторых лиц: боязнь замкнутых пространств (клаустрофобия), открытых пространств (агорафобия).

Социальная совместимость учитывает отношение человека к конкретной социальной группе и наоборот — социальной группы к

<u>Биофизическая совместимость</u> - создание такой окружающей среды, которая обеспечивает высокую работоспособность и нормальное физиологическое состояние оператора. Эта задача стыкуется с требованиями охраны труда.

При этой совместимости учитывается терморегулирование организма человека, зависимое от параметров микроклимата, а также виброакустические характеристики среды и освещенность.

<u>Энергетическая совместимость</u> - это согласование органов управления с оптимальными возможностями оператора в отношении прилагаемых усилий, затрачиваемой мощности, скорости и точности движений.

<u>Антропометрическая совместимость</u> - это учет размеров тела человека, возможности обзора пространства, учет положения (позы) оператора в процессе работы с целью минимальной затраты физических сил.

При этом учитывается объем рабочего места, зоны досягаемости для конечностей оператора, расстояние от оператора до приборного пульта и т. п.

Рабочим местом считается место постоянного или периодического пребывания работающего для наблюдения и ведения производственных процессов или экспериментов.

Кроме того рабочее место человека-оператора - это место в системе, оснащенное средствами отображения информации, органами управления и вспомогательным оборудованием.

Рабочее место характеризуется рабочей средой и рабочей зоной. Рабочая среда характеризуется физическими, химическими, биологическими, информационными, социально-психологическими и эстетическими факторами. На рис.1а) показаны размеры рабочей зоны рук при позе "сидя", а на рис. 1б) – при позе "стоя".

Рациональное устройство рабочего места учитывает его оптимальную планировку, степень механизации, автоматизации, выбор рабочей позы оператора и расположение органов управления инструментов, материалов. Оптимальная планировка рабочего места обеспечивает удобство при выполнении работы, экономию сил и времени рабочего (оператора), правильное использование производственных площадей, безопасные условия работы.

Организация рабочего места заключается в выполнении мероприятий, обеспечивающих рациональный и безопасный трудовой процесс и эффективное использование предметов и орудий труда, что способствует повышению производительности труда и снижает утомляемость работающих.

Рабочая зона - часть пространства рабочего места, в котором осуществляются трудовые процессы. Рабочая поза будет наименее утомительна только при условии, если рабочая зона сконструирована правильно.

Размер зоны приложения труда определяется характером труда и может ограничиваться площадью (пространством), оснащенной технологическим оборудованием, оснасткой, инструментами и приспособлениями.

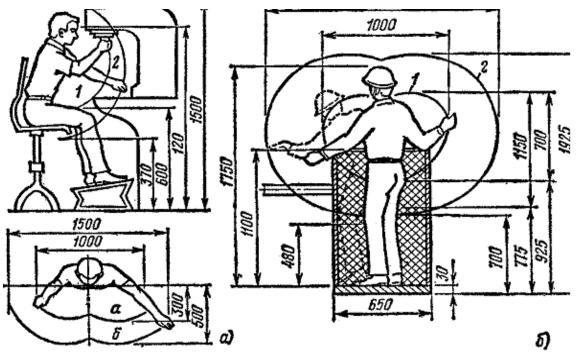


Рисунок 1. Размеры рабочей зоны рук

Рабочая зона оператора ограничивает пространство, в пределах которого движения рук оператора наиболее экономичны, без излишних напряжений. ГОСТ 22269 "Рабочее место оператора" устанавливает общие эргономические требования.

Информационные зоны визуального поля обзора человека представлены на рис.2. и определяются полями зрения (поле ясного зрения, поле обзора и т. д.), размеры которых выражаются углами зрения.

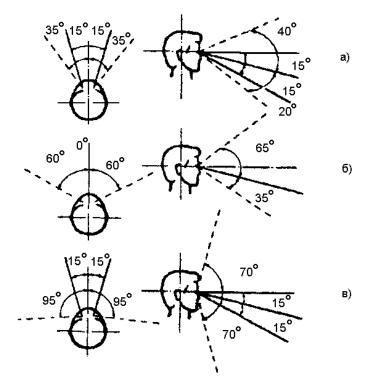


Рисунок 2. Информационные зоны визуального поля: a – при повороте глаз; δ – при повороте головы; ϵ – при повороте головы и глаз

В процессе управления человек обязательно должен прилагать некоторые усилия к органам управления, так как отсутствие усилий (что может быть при кнопочном управлении) дезориентирует человека, лишает его уверенности в правильности выполненного действия. Однако прилагаемые к органам управления усилия должны быть совместимы с биомеханическими параметрами человека. Слишком большие усилия приводят к перегрузке человека

Важен выбор рабочего положения человека. Рабочая зона выбрана правильно, если проекция общего центра тяжести тела лежит в пределах площади опоры

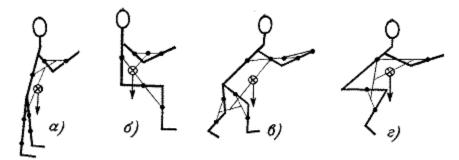


Рисунок 3. Схема рабочей позы при устойчивом (а,б) и неустойчивом (в,г) положении: а.в – стоя; б,г - сидя.

Если в процессе работы действует небольшая группа мышц, то предпочтительнее поза сидя; при работе большой группы мышц - стоя. При

проектировании рабочего места необходимо учитывать следующее: если при прямой позе сидя мышечную работу принять равной единице, то при прямой позе стоя мышечная работа составляет 1,6; при наклонной позе сидя мышечная работа составляет - 4, а при наклонной позе стоя - 10 единиц. Статичная поза утомительнее, нежели динамическая.

В связи с внедрением механизации и автоматизации рабочие позы могут быть статичны, т.е. человек сидит, например, у пульта управления блока электростанции в малоподвижной позе. Лишение рабочего двигательной активности вызывает утомление, поэтому особое значение приобретают специальные физические упражнения, снижающие это утомление.

В пределах рабочей зоны размещаются органы управления (рукоятки, кнопки, рычаги), инструмент; измерительные приборы, приспособления и так, чтобы исключались лишние, непроизводительные движения.

Различают оптимальную и максимальную рабочие зоны. Наиболее часто употребляемые инструменты, материалы и др. размещаются в оптимальной рабочей зоне, редко употребляемые - в максимальной рабочей зоне.

Правильное конструирование рабочих зон определяется их соответствием с оптимальным полем зрения рабочего и определяется дугами, которые может описать рука, поворачивающаяся в плече или локте на уровне рабочей поверхности, а движением рук управляет мозг человека в соответствии с коррекцией глаз. Поэтому рабочую зону принимают удобной для охвата человеческим взором.

Рабочие места проектируются с учетом антропометрических данных усредненных размеров человеческого тела. Иначе, если размещение органов управления не будет соответствовать физическим возможностям человека, работа окажется неоправданно утомительной. При этом учитываются рост, размах и длина рук, ширина плеч, высота колен и т.д.В соответствии с рабочими зонами и антропометрическими данными проектируются рабочие места в любом производственном процессе и любые машины и механизмы, обслуживаемые человеком.